Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Modern engineered systems, and learning‐based systems, in particular, provide unprecedented complexity that requires advancement in our methods to achieve confidence in mission success through test and evaluation (T&E). We define learning‐based systems as engineered systems that incorporate a learning algorithm (artificial intelligence) component of the overall system. A part of the unparalleled complexity is the rate at which learning‐based systems change over traditional engineered systems. Where traditional systems are expected to steadily decline (change) in performance due to time (aging), learning‐based systems undergo a constant change which must be better understood to achieve high confidence in mission success. To this end, we propose pairing Bayesian methods with systems theory to quantify changes in operational conditions, changes in adversarial actions, resultant changes in the learning‐based system structure, and resultant confidence measures in mission success. We provide insights, in this article, into our overall goal and progress toward developing a framework for evaluation through an understanding of equivalence of testing.more » « less
-
Abstract Health monitoring of civil infrastructures is a key application of Internet of things (IoT), while edge computing is an important component of IoT. In this context, swarms of autonomous inspection robots, which can replace current manual inspections, are examples of edge devices. Incorporation of pretrained deep learning algorithms into these robots for autonomous damage detection is a challenging problem since these devices are typically limited in computing and memory resources. This study introduces a solution based on network pruning using Taylor expansion to utilize pretrained deep convolutional neural networks for efficient edge computing and incorporation into inspection robots. Results from comprehensive experiments on two pretrained networks (i.e., VGG16 and ResNet18) and two types of prevalent surface defects (i.e., crack and corrosion) are presented and discussed in detail with respect to performance, memory demands, and the inference time for damage detection. It is shown that the proposed approach significantly enhances resource efficiency without decreasing damage detection performance.more » « less
An official website of the United States government
